Δευτέρα 17 Φεβρουαρίου 2025

Με οριζόντια ή πλάγια δύναμη;

 

Ένα σώμα ηρεμεί σε οριζόντιο επίπεδο, όταν δέχεται την επίδραση οριζόντιας δύναμης με μέτρο F=mg, όπου m η μάζα του σώματος, όπως στο πρώτο σχήμα. Τότε το σώμα κινείται προς τα δεξιά, ενώ πάνω του ασκείται τριβή ολίσθησης μέτρου Τ1. Αν η ίδια δύναμη (του ίδιου μέτρου) ασκηθεί στο σώμα σχηματίζοντας με την οριζόντια διεύθυνση γωνία θ (ημθ=0,6 και συνθ=0,8), όπως στο 2ο σχήμα, τότε θα δεχτεί δύναμη τριβής μέτρου Τ2.

i)  Για τα μέτρα των δύο παραπάνω  τριβών, ισχύει:

α) Τ1 < Τ2,     β) Τ1 = Τ2,    γ) Τ1 > Τ2.

ii) Αν ο συντελεστής τριβής μεταξύ σώματος και επιπέδου είναι μ=0,5 και α1 η επιτάχυνση που αποκτά το σώμα στην πρώτη περίπτωση, ενώ α2 η αντίστοιχη επιτάχυνση στην δεύτερη περίπτωση, θα ισχύει:

α) α1 < α2,        β) α1 = α2,      γ) α1 > α2.

iii) Αν σε χρονικό διάστημα t, το σώμα με την επίδραση της οριζόντιας δύναμης μετατοπίζεται κατά x1, ενώ στον ίδιο χρόνο με την επίδραση της πλάγιας δύναμης μετατοπίζεται κατά x2, ισχύει:

α) x2 < 1,1x1,     β) x2 = 1,1x1,         γ) x2 > 1,1x1,    

Απάντηση:

ή

Με οριζόντια ή πλάγια δύναμη;

Δευτέρα 10 Φεβρουαρίου 2025

Η τριβή από οριζόντια και πλάγια σανίδα

 

Ένα σώμα Σ, μάζας m=1kg εκτοξεύεται με αρχική ταχύτητα υο=4m/s, πάνω σε μια οριζόντια σανίδα, καρφωμένη  στο έδαφος, από σημείο κοντά στο άκρο της Α. Το σώμα σταματά λόγω τριβών αφού διανύσει διάστημα 1,2m, πάνω στη σανίδα.

i)   Να αποδείξετε ότι μεταξύ του σώματος Σ και της σανίδας αναπτύχθηκε τριβή με συντελεστή τριβής ολίσθησης μ=2/3.

ii)  Ανασηκώνουμε το άκρο Γ της σανίδας και με την βοήθεια στηρίγματος την σταθεροποιούμε όπως στο κάτω σχήμα, ώστε να σχηματίζει με το οριζόντιο επίπεδο γωνία θ, όπου ημθ=0,4 και συνθ=0,9. Εκτοξεύουμε από το άκρο Α, το ίδιο σώμα με αρχική ταχύτητα υο=4m/s, παράλληλη προς την  σανίδα και φορά προς τα πάνω.

α) Να υπολογίσετε το μέτρο της τριβής ολίσθησης που ασκείται στο σώμα.

β) Να βρεθεί η επιτάχυνση του σώματος.

γ) Πόση απόσταση διανύει το σώμα, κατά την προς τα πάνω κίνησή του;

δ) Να εξετάσετε αν το σώμα επιστρέψει στο άκρο Α της  σανίδας.

Δίνεται g=10m/s2, ενώ η οριακή τριβή θεωρείται ίση με την τριβή ολίσθησης.

Απάντηση:

ή