Τετάρτη, 25 Μαΐου 2016

Δύο κινήσεις σε ένα διάγραμμα.

Στο διπλανό διάγραμμα δίνεται η θέση σε συνάρτηση με το χρόνο, δύο αυτοκινήτων, τα οποία κινούνται στον ίδιο ευθύγραμμο δρόμο.
i) Τα δυο οχήματα κινούνται προς την ίδια κατεύθυνση ή όχι;
ii) Ποιο αυτοκίνητο κινείται με μεγαλύτερη κατά μέτρο ταχύτητα;
iii) Πόσο απέχουν μεταξύ τους τα δυο αυτοκίνητα τη στιγμή t1;
Να δικαιολογήσετε τις απαντήσεις σας.
ή



Πέμπτη, 19 Μαΐου 2016

Τι θα γίνει αν αλλάξουμε τη δύναμη;

Ένα σώμα σύρεται σε οριζόντιο επίπεδο με σταθερή ταχύτητα, με την επίδραση σταθερής οριζόντιας δύναμης F, όπως στο διπλανό σχήμα.
i) Το οριζόντιο επίπεδο είναι λείο ή όχι;
ii) Αν μειώσουμε το μέτρο της ασκούμενης δύναμης στην τιμή F1=F/3, τότε το σώμα θα αποκτήσει επιτάχυνση:
α) Προς τα δεξιά μέτρου F/3m.
β) Προς τα αριστερά μέτρου F/3m
γ) Προς τα δεξιά μέτρου 2F/3m.
δ) Προς τα αριστερά μέτρου 2F/3m
Να δικαιολογήσετε τις απαντήσεις.
ή

Τρίτη, 17 Μαΐου 2016

Όταν δεν μετακινείται η ντουλάπα.

Ένας άνθρωπος μάζας m, προσπαθώντας να μετακινήσει μια ντουλάπα, μάζας Μ=1,5m,  την σπρώχνει ασκώντας της οριζόντια δύναμη F1, χωρίς να μπορέσει όμως να την μετακινήσει.
i)   Να σχεδιάστε στην κόλλα σας, σε χωριστά σχήματα, τις  δυνάμεις που ασκούνται:
α) στην ντουλάπα και β) στον άνθρωπο.
ii)  Μεγαλύτερη τριβή από το έδαφος ασκείται:
α) στην ντουλάπα        β) στον άνθρωπο       γ) ασκούνται τριβές ίσου μέτρου.
Να δικαιολογήσετε τις απαντήσεις σας.
ή



Κυριακή, 15 Μαΐου 2016

Μια μεταβλητή δύναμη, στη διάρκεια της κίνησης.

Ένα σώμα μάζας m=2kg κινείται ευθύγραμμα, σε λείο οριζόντιο επίπεδο, με σταθερή ταχύτητα υ0 και σε μια στιγμή περνά από τη θέση x=0. Στη θέση αυτή, δέχεται την επίδραση οριζόντιας μεταβλητής δύναμης F, ίδιας κατεύθυνσης με την ταχύτητα, το μέτρο της οποίας μεταβάλλεται σε συνάρτηση με τη θέση x, όπως στο διάγραμμα. Το αποτέλεσμα είναι μετά από λίγο να περνά από τη θέση x1=3m, έχοντας ταχύτητα υ1=4m/s.
i)  Να υπολογιστεί η αρχική επιτάχυνση του σώματος (στη θέση x=0).
ii)  Κατά τη μετακίνηση του σώματος μεταξύ των θέσεων x0=0 και x1=3m, η ταχύτητα του σώματος:
α) αυξάνεται,   β) παραμένει σταθερή,   γ) μειώνεται.
iii) Να υπολογιστεί η ενέργεια που μεταφέρεται στο σώμα, μέσω του έργου της δύναμης F, κατά την παραπάνω μετακίνηση.
iv) Να υπολογιστεί ο στιγμιαίος ρυθμός με τον οποίον μεταφέρεται ενέργεια στο σώμα, τις χρονικές στιγμές που το σώμα περνά από τις θέσεις x0 και x1.
ή




Πέμπτη, 12 Μαΐου 2016

Πώς μπορούμε να σταματήσουμε γρηγορότερα το σώμα;

Ένα σώμα μάζας 1kg, κινείται σε οριζόντιο επίπεδο και σε μια στιγμή περνάει από το σημείο Ο,  στη θέση x=0, με ταχύτητα υο=1m/s και σταματά σε σημείο Α, στη θέση x1=0,5m.
i)  Να σχεδιαστούν οι δυνάμεις που ασκούνται στο σώμα και στη συνέχεια να υπολογιστεί ο συντελεστής τριβής ολίσθησης μεταξύ σώματος και επιπέδου.
ii) Επαναλαμβάνουμε το πείραμα, αλλά προκειμένου να πετύχουμε ώστε το σώμα να σταματήσει στη θέση x2=0,4m, καθώς περνάει το σώμα από το Ο, του ασκούμε με το χέρι μας, μια σταθερή κατακόρυφη δύναμη F, όπως στο 2ο σχήμα. Να υπολογιστεί το μέτρο της δύναμης F.
iii) Σε μια 3η επανάληψη του πειράματος, ασκούμε στο σώμα μεταβλητή κατακόρυφη δύναμη F1 το μέτρο της οποίας μεταβάλλεται με τη θέση x, σύμφωνα με τη σχέση F1=150x. Να υπολογίσετε τη μέγιστη τιμή της δύναμης, στη διάρκεια της επιβράδυνσης του σώματος, μέχρι να σταματήσει.
Δίνεται g=10m/s2.
ή